
B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

89 

 

 

 
 

 

Damiana TELITI 1 

Olsi SHEHU 2 

 

 

Comparative Analysis of MD5, SHA-256, and SHA-512 Performance: Unexpected 

Cases of SHA-512 Outperforming SHA-256 
 

 
Abstract 

In the last several years, one of the concerns has been the resistance of hashing algorithms against 

supercomputers or quantum computers, which have higher computing capabilities compared to 

traditional computers. This study focuses on different hashing algorithms' performance under 

different inputs involved in ensuring data integrity. A Python script measures the performance of 

three different hashing algorithms in various type of inputs using the same hardware power. The 

first scenario uses the software to generate numeric inputs of varying lengths. Secondly, the same 

program generates different numbers of strings with different lengths, and lastly, it uses different 

text-based wordlists as an input. After each scenario, it assesses simultaneous or non-simultaneous 

time consumption, as are the efficiency metrics using factors such as speed, key length, hardware 

utilization, and robustness. Using the provided information, the designer could come up with 

measurable values for each of the features studied in this paper, as well as simulate attacks on 

quantum computers to see how well current hashing algorithms work with new hardware 

technologies. This study concludes that sha512 outperforms sha215 or md5 in certain scenarios, 

despite its more complex hashing algorithm and longer bit length. 

Keywords: hash, brute force, collision resistance, robustness, performance, quantum 

computer

 
1 MSc. Damiana TELITI, Computer Science Department, University College “Bedër”, Tirana, Albania.  
2 MSc. Olsi SHEHU, Computer Science Department, University College “Bedër”, Tirana, Albania.  



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

90 

 

 

1. Introduction 

In the realm of data security, hash algorithms guarantee the integrity and validity of information. 

These functions are critical in guaranteeing data integrity verification and providing strong 

methods to detect any illegal modifications or tampering. However, with the sophistication of 

cyber-attacks and the advancement of computing technology, questions arise about the 

effectiveness of hash functions in maintaining data integrity. This research aims to explore the 

fundamental concepts of hash functions and their essential role in verifying data integrity. This 

paper aims to provide a thorough knowledge of the importance of hash functions in ensuring the 

integrity of data by extensively examining their theoretical foundations and practical uses. 

Moreover, this study seeks to enhance cryptographic security by creating a specific tool. This 

program aims to streamline the thorough examination of several cryptographic hash functions, 

specifically to evaluate their security effectiveness in defending against collision attacks. In the 

first scenario, the software generates numerical strings of different numbers of characters. For 

example, if the length of the generated string is five, it will produce numbers that range from 00000 

to 99999. Subsequently, each value will undergo encryption using one of the chosen hashing 

algorithms. We measure and store in memory the encryption execution time and the number of 

encrypted values for each algorithm, repeat the same process for other hashing algorithms, and 

finally compare the results between them. The second scenario specifies the minimum and 

maximum lengths for each randomly generated string, as well as the total number of strings to 

generate. Unlike the preceding case, in which all strings have the same length and contain only 

numeric characters, the generated strings have different lengths and contain alphanumeric 

characters. Let's assume, for example, that the shortest string should contain 2 characters, the 

longest string should contain 10 characters, and the script should generate a total of 1000 random 

strings. The script will generate 1000 random alphanumeric strings with lengths ranging from 2 to 

10 characters, encrypt each string, and produce a report detailing the elapsed time for encrypting 

these 1000 strings. The final phase will assess different hashing methods using wordlists 

containing text-based data. Each of the studied hashing algorithms encrypts each line of the same 

wordlist. We expect this method to execute faster than the two previous scenarios because it uses 

wordlists instead of generating strings. The script will create performance reports using the same 

methods as in the previous scenarios after it finishes running. 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

91 

 

In order to guarantee "fair" competition between different hashing algorithms, it is necessary to 

run them concurrently and make use of an equivalent allocation of hardware resources [6]. In order 

to carry out multiple processes simultaneously, one can make use of the "multiprocessing" or 

"multithreading" modules in Python. In this situation, multiprocessing is more advantageous than 

multithreading [7] since it enables each process to execute in its own Python interpreter, effectively 

bypassing the Global Interpreter Lock (GIL) and therefore fully exploiting multiple CPU cores. 

This ensures that each algorithm utilizes the same hardware resources, enabling fair performance 

comparisons and precise benchmarking across concurrent processes. 

2. Literature Review 

In order to bolster security and mitigate vulnerabilities found in these hash functions, Roshdy et 

al. [1] conducted a study that presents a novel secure hash algorithm that combines features from 

SHA-256 and MD5. The suggested approach enhances complexity and improves resistance against 

sophisticated hash attacks by adjusting the message expansion in SHA-256 and implementing the 

double-Davies-Mayer scheme. This research reveals that the new algorithm provides superior 

security compared to SHA-256 and MD5. It successfully clears the avalanche and differential 

attack tests with greater chances. The suggested hash method produces a hash of 256 bits, which 

is well-suited for applications that need to ensure message integrity and use digital signatures. The 

architecture guarantees enhanced diffusion by executing an XOR operation between each output 

and the following input, preventing the occurrence of similar or the same outputs in the following 

stages. The new method's complexity and security are superior to those of SHA-256 and MD5. 

Further research could include a study on this algorithm's longer hash sizes. 

Pittalia [2] focuses on the necessity of hashing methods in network security to guarantee the 

authenticity of data transferred between different entities. Almost every technology implements 

hash algorithms, including SHA-1, SHA-2, SHA-3, MD4, MD5, or any other, to produce safe data 

encryption. It can identify unwanted alterations to the input, authenticate data origins, and enable 

digital signatures. These algorithms should guarantee that the encrypted text remains unreversible 

and prevent collision attacks (two different inputs that result in the same hash). Furthermore, the 

author stresses the importance of hash algorithm implementation to protect data integrity and 

validate the integrity of sensitive information. The examination of MD5, SHA variants, and 

Whirlpool algorithms illuminates their distinct designs and uses in contemporary digital security. 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

92 

 

The paper "A Flexible Framework for Exploring, Evaluating, and Comparing SHA-2 Designs" 

introduces a new workbench that aims to streamline the assessment and comparison of different 

SHA-2 hardware implementations. The framework offers a standardized environment to test 

different hash algorithms against common metrics such as performance, hardware usage, and 

energy consumption. The suggested platform ensures that comparisons between different 

algorithms are more uniform and focused on algorithms' architectural merits rather than hardware 

technologies. The workbench can accommodate a diverse range of design methodologies and 

effectively aid in the creation of novel SHA-2 transformation round cores. Designers achieve this 

by integrating their customized cores into the framework and effortlessly adjusting the surrounding 

circuitry. The platform's versatility allows for thorough analysis and improvement of architectural 

designs, ultimately aiding in the identification of the most efficient solutions that meet certain 

limits and criteria. 

Martino et al. [3] conducted a study that presents a tool for the evaluation of different 

implementations of SHA-2 hash functions. The system is based on Hardware Description 

Language (HDL) and offers a variety of functionalities, including allowing users to thoroughly 

investigate various architectures and assess their performance and energy consumption. The 

process evaluates several optimization solutions, such as pipelining, loop unrolling, variable 

precomputation, data prefetching, and spatial reordering. This approach guarantees that 

optimization techniques largely impact outcomes, rather than variations in the target technology. 

The conclusions emphasize the workbench's usefulness in supporting detailed architectural 

analysis and optimization, enabling the creation of an efficient hashing algorithm. Future work 

will involve extending the framework to incorporate supplementary hash algorithms and 

cryptographic primitives. Furthermore, it will entail enhancing and investigating optimization 

approaches to improve the framework's ability to evaluate and compare various capabilities. 

Roshdy et al. [4] conduct a comparative analysis of the performance and security characteristics 

of MD5 and SHA cryptographic hash algorithms. Developed in 1991, MD5 generates a 128-bit 

hash and is currently vulnerable to collision attacks, thereby compromising its security. The NSA 

designed the SHA hashing family to improve the security of the previous MD5 method by creating 

a new algorithm with a 256-bit bit length. It provides improved resistance against collision attacks 

and demonstrates greater processing performance. The process entails a meticulous examination 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

93 

 

of their architecture, computational efficacy, and susceptibility to attacks. The study's findings 

indicate that SHA-256 performs at higher levels of security and efficiency in comparison to MD5. 

Future research suggests prioritizing the enhancement of the security and performance of different 

SHA algorithms and other cryptographic techniques. 

Sumagita and Riadi [5] investigate the shortcomings of using MD5 for password encryption in 

online applications, highlighting its susceptibility to collision attacks. The study recommends 

using the SHA-512 algorithm to enhance security. The method conducts in-depth research on the 

relevant literature, has a profound understanding of the requirements, conducts a comprehensive 

vulnerability assessment, meticulously designs the system, and conducts rigorous testing. During 

the testing procedure, we conducted both penetration testing and user acceptability testing (UAT). 

The results of these tests demonstrated that the new system, based on SHA-512, provides a 

significant security improvement. According to the UAT findings, 86 percent of respondents had 

a favorable response, as indicated by the findings of the UAT conducted. The results of these tests 

demonstrated that the new system, based on SHA-512, significantly improves security. According 

to the UAT findings, 86 percent of respondents had a favorable response, as indicated by the 

findings of the UAT conducted. The current findings demonstrate that SHA-512 can provide a 

high level of competency and efficacy in online applications. Subsequent research will concentrate 

on enhancing cryptographic techniques in order to meet diverse security challenges that are 

continually changing. 

Table 1 Overview of Related Works 

Paper Methodology Conclusion Recommendations for 

Future Research 

Roshdy et al. [1]  This study applies the avalanche test, 

using a 1-bit difference and multiple-bit 

differences, to both a suggested algorithm 

and SHA256. We conducted the test on 20 

different messages. It demonstrates that 

the suggested algorithm has a higher 

likelihood of passing the avalanche test 

compared to SHA256. 

 

The suggested hash algorithm, which 

combines elements of MD5 and SHA-

256, generates a 256-bit hash and 

exhibits greater intricacy and security 

compared to SHA-256 and MD5. The 
device has successfully passed testing 

for both avalanche and differential 

attacks, demonstrating its immunity to 
differential attacks. 

 

 

Subsequent research should focus 

on increasing the hash size to 

improve security, as well as 

clarifying the method to improve 

performance and efficiency. 
Additionally, performing deep 

analysis to assess its resistance 

against new methods of attack and 
pursuing the establishment of 

formal standards will guarantee its 

dependability and wider adoption. 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

94 

 

 

As observed in the previous table, multiple researchers have investigated the performance of 

various hashing algorithms. Each of these studies has its own features that differ from the others. 

The field of cryptographic hash functions has been the subject of previously conducted research 

that has thoroughly explored a variety of algorithms and the applications of such methods. Roshdy 

and his colleagues [1] proposed a new secure hash algorithm that combines the best parts of SHA-

256 and MD5. This makes the system more complicated and harder to break with advanced hash 

attacks. Through the use of avalanche and differential attack testing, they were able to convincingly 

show the enhanced security of the implementation. In [2], Pittalia studied the importance of 

implementing hashing methods for network security. He demonstrated the implementation and 

importance of hashing algorithms in data protection, including MD5 and SHA. The creation of a 

Pittalia [2]  A tabular comparison provides a concise 

overview of the block size, digest size, word 

size, number of rounds, collision resistance, 

and operations employed to evaluate the 

algorithms. The study assesses the security 

of each algorithm, taking into account 

known flaws, theoretical threats, and 

practical issues.  

Effective implementation of hash 

algorithms is essential for ensuring 

cryptographic integrity and security. 
This study provides a 

comprehensive examination of the 

creation and analysis of MD5, 
several SHA variations, and 

Whirlpool. Employing suitable hash 
functions is critical for ensuring data 

integrity and verifying users' 

identities through digital 
certificates.  

 

Future research ought to prioritize 

the development of hash algorithms 

that have improved security 

features, explore quantum-resistant 

alternatives, and boost the 

efficiency of existing algorithms, 

specifically for applications in 

blockchain and the Internet of 

Things (IoT). 

Martino et al.[3]  The SHA-2 workbench is a highly efficient 

tool for investigating and enhancing various 

architectural options in SHA-2 hardware 

accelerators. It aids in determining the most 

suitable combinations of architectural 

strategies and target technologies, resulting 

in the optimization of hash rates and space 

efficiency. 

This method involves incorporating 

a specific SHA-2 transformation 

round core into the framework, 
specifically designed for a particular 

FPGA. It repeatedly modifies the 

architectural parameters throughout 

the process. This technique ensures 

uniform and comparable outcomes 

by removing the impact of certain 
hardware technologies and 

synthesis tools. 

Subsequent investigations should 

enhance the workbench to 

accommodate supplementary 
cryptographic algorithms and assess 

diverse hardware technologies. 

Expanding the foundation for 

software-programmable processors 

and creating user-friendly interfaces 

and automation tools will increase 
their application usability. 

Roshdy et al. [4]  A literature study, a needs analysis, and the 

plan for the system are all components of the 

technique. The SHA-512 algorithm is the 

primary replacement for insecure 

encryption technologies. It evaluates the 

efficacy of the newly implemented 

encryption using user acceptance testing 

with questionnaires and penetration testing 

with brute force attacks. 

According to the findings of the 

study, SHA-512 considerably 
improves password encryption 

especially applied in web 

applications. Penetration testing 
demonstrated the robustness of 

SHA-512 against attacks, and user 

acceptability testing revealed a high 
level of approval, verifying the 

procedure's efficiency in enhancing 

security. 

 

Enhancing SHA-512 for improved 
performance and security should be 

the focus of future research. Future 

research should incorporate 
sophisticated cryptographic 

methods, regularly update 

algorithms, and conduct real-world 
tests to ensure ongoing security 

advancements. 

Sumagita and Riadi [5]  An examination of the existing literature, a 

requirements analysis, and a vulnerability 

assessment of the system were all 

components of the study. The primary focus 

of this study was to evaluate the encryption 

capabilities of web-based application login 

systems. During the implementation phase, 

we upgraded the hash algorithm from MD5 

to SHA 512. User acceptance testing and 

penetration testing subsequently took place. 

 

Implementing SHA 512 

significantly increased the security 
of web-based application login 

systems. This is evidenced by the 

success of penetration testing and 
the positive feedback from users, 

including 86% who agreed that the 

security had improved. 

 

Further research should investigate 

the possibility of optimizing SHA 
512 in order to cut down on 

processing time, as well as the 

possibility of integrating additional 
security measures to further 

strengthen web-based apps. 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

95 

 

modular framework for researching SHA-2 architectures streamlined the evaluation and 

comparison of various SHA-2 hardware implementations. Martino et al. [3] introduced a tool for 

analyzing SHA-2 hash algorithms using HDL. Its primary focus was on strategies on how to 

optimize both performance and energy usage. Their research brought to light the significance of 

doing a detailed architecture analysis when it comes to optimizing hashing algorithms. In addition, 

Roshdy et al. [4] conducted a comparison study of the cryptographic hash algorithms, including 

MD5 and SHA. The study resulted in the superiority of SHA-256 over MD5 in terms of both 

security and efficiency. In conclusion, Sumagita and Riadi [5] conducted research on MD5's 

vulnerabilities in the context of password encryption and suggested SHA-512 as a more secure 

alternative. Their extensive testing, which included both penetration and user acceptability tests, 

indicated that they had made major enhancements to the security of the software. 

This study relies on a multiprocessing method that uses the same amount of hardware resources. Each 

algorithm uses its own process and runs concurrently with other algorithms. This study tests MD5, SHA-

256, and SHA-512 to examine their performance under various input types.  

 

3. Hash Comparison with Python 

Mathematically, hashing models transform a given string input into another string of a fixed length. 

They generate a different signature for each different input, guaranteeing that even a minor 

modification to the input will result in a completely different output. Information security, data 

integrity verification, password verification, and various other computer applications extensively 

implement hash algorithms to ensure unique identification and data protection [8]. 

Notable hash algorithms include MD5, SHA-1, SHA-256, and SHA-512. Modern technologies 

implement numerous hashing algorithms to guarantee the integrity and security of digital data. 

Each entity contains different attributes, including both its advantages and limitations. For 

example, certain methods demonstrate higher speed compared to other algorithms that prioritize 

security by increasing their mathematical complexity. Sometimes a hashing method is appropriate, 

but sometimes it has drawbacks. So, for a fair assessment between them, it is necessary to select 

the proper algorithm that best meets an application or scenario's needs and unique criteria. 

Conducting a fair comparison of different hashing algorithms is an essential step that can guarantee 

the credibility, integrity, and availability of digital data in a communication system [6]. 

Everyday applications frequently use hash algorithms to ensure data integrity and authenticate 

their identities. For instance, they verify if a file has undergone alteration during network 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

96 

 

transmission. Hash algorithms, on the other hand, play a decisive role in password security, as they 

provide an effective means of protecting saved passwords by generating their hashes and storing 

them in an encrypted format. In addition to their primary function, hashing algorithms are 

inevitable in various areas of computer science, including network security, database integrity, and 

software validation [9]. This study investigates the advantages and limitations of md5, sha256, and 

sha512 by generating performance data. We use Python to create a tool that concurrently compares 

several hashing methods. We achieve this by either employing a predetermined collection of 

keywords or constructing a keyword list. This method accurately assesses the performance of each 

hashing algorithm. The objective of this study is to aid in understanding and choosing the most 

suitable hash algorithm for different usage circumstances. 

 

4. Theoretical Background 

We used the following Python packages to conduct this study: 

1. The Hashlib package is one of the most advanced and reliable Python libraries. It provides a 

variety of hashing algorithms to generate hash-encrypted texts, as well as an intuitive and straight-

forward implementation of the most popular hashing algorithms, including md5, sha256, and 

sha512. Technologies that depend on data verification, password storage, or various cryptographic 

procedures often include the hashlib module. With its user-friendly interface, this tool enables 

developers to easily incorporate different hashing processes into a project, making it an essential 

component in contemporary Python programming for jobs that involve secure data manipulation 

[10]. 

2. Time is a library that offers a wide range of functionalities for managing time-based processes. 

It provides different functionalities, including the ability to retrieve the current time, compute the 

execution time, and carry out operations related to time intervals. This module primarily uses a 

method known as time (). It provides the current time format and representations. The time module 

is necessary for applications that entail accurate time measurement, scheduling, or 

synchronization. The versatility and user-friendly nature of Python make it an essential tool for 

developers working on time-sensitive activities [11]. 

3. ArgParse is a powerful library that supports command-line argument parsing. It can provide an 

appealing interface by specifying the expected software arguments. Argparse enables users to 

specify arguments, set default values, and generate help messages automatically. The main features 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

97 

 

of this module include the provision of positional and optional parameters, verification of data 

types, and the ability to personalize help explanations. It improves the flexibility and usability of 

Python scripts by making it easier to manage user input and configure program behavior using the 

command line [17]. 

4. Multiprocessing utilizes several processes running simultaneously; this robust library can 

significantly improve the performance of any software. Increasing the number of CPU cores 

increases the capacity for parallel processing. Multiprocessing enables parallelism by 

circumventing the Global Interpreter Lock (GIL), leading to enhanced efficiency. Process pool 

support enables simultaneous execution of a function on multiple input values. Differently from 

the multithreading Python module, multitasking shares the same amount of hardware resources for 

several parallel operations [6]. 

5. TQDM is an extremely efficient library for converting progress bars into loops and iterable 

processes. The interface provides a simple and intuitive platform for tracking the progress of tasks 

with a long execution time, which is particularly useful for activities such as data processing, file 

management, and computational processes. Software developers can effortlessly incorporate 

progress bars into their code using tqdm by encapsulating any iterable with the tqdm function. The 

module provides the ability to customize progress bars, allowing for the inclusion of additional 

details such as anticipated completion time and processing speed. Furthermore, it effortlessly 

combines with widely-used libraries such as Pandas and multiprocessing, hence improving its 

usefulness in diverse applications [13]. 

6. Subprocess is a versatile library that facilitates the creation of additional processes, establishes 

connections to their input, output, and error pipes, and retrieves their return codes. Python scripts 

provide a robust interface for executing and communicating with external programs and scripts. 

The subprocess module provides a more consistent and flexible way to replace earlier modules 

such as system and spawn. The primary operations provided by the subprocess module are 

subprocess. Run (), subprocess. Open (), and subprocess. Call (). These functions enable the 

execution of external commands, the transfer of data between processes, and the retrieval of 

execution results. The subprocess module is required for creating applications that must interact 

with the system shell or other programs. It enables the execution of complex shell commands and 

streamlines inter-process communication [14]. 

7. Random is a module that provides a wide range of functionalities for generating random 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

98 

 

numbers of different datatypes, including integers, floating-point values, and sequences. It 

generates pseudo-random numbers and randomizes them. The main functionalities of the module 

include the randint () function, which generates random integers within a certain range; the random 

() function, which produces a random float between 0.0 and 1.0; and the choice () function, which 

selects a random element from a sequence that is not empty. Additionally, it provides functionality 

for rearranging sequences using the shuffle () method and producing random samples using the 

sample () method. The random module is essential for applications that include simulations, 

statistical sampling, games, security techniques, and any situation that requires the generation of 

random data [15]. 

8. The Matplotlib module offers a wide array of plotting features and is able to generate diverse 

charts, graphs, lines, plots, bars, histograms, and more. It supports the production of high-quality 

output in many formats and interactive settings on different platforms. It also has the ability to 

precisely modify the visual elements of the plot, such as adjusting the axes, labels, legends, and 

colors. Matplotlib is an indispensable tool in Python for data analysis, scientific research, and any 

application that requires accurate and informative visualizations of data [16]. 

4. Methodology 

To conduct this study, a Python software is designed to evaluate the effectiveness of various 

hashing algorithms using the previously listed Python libraries. The tool will possess three main 

features. 

On the first feature, the objective is to assess the efficiency of hashing algorithms by encrypting 

consecutive numbers of different lengths created by the "crunch" software. The purpose of this 

study is to evaluate how various algorithms perform against a given set of data that follows a 

known numeric pattern. It seeks to provide information about the efficiency of these algorithms 

when dealing with organized input. 

Similar to the previous scenario, the second case it generates random alphanumeric sequences of 

varying lengths. The tool will assess the efficiency of hashing algorithms in handling input that is 

more unpredictable and diverse, mirroring real-world usage scenarios where data frequently 

doesn't have a consistent pattern. 

In the last scenario, the tool will assess the efficiency of hashing algorithms by encrypting several 

wordlists consisting of text-based data. This is critical for applications such as password hashing 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

99 

 

and dictionary-based attacks. In each situation, we will gather and examine significant 

performance data to determine the most efficient hashing method for unique circumstances. 

Other essential features of the tool in this study include its ability to assess the efficiency of 20 

different hashing algorithms, including SHA-512, SHAKE-128, RIPEMD-160, SM3, BLAKE2b, 

SHA-224, and others. It offers performance results for each algorithm. You can test hashing 

methods individually or concurrently. The evaluation then examines how many hashed keys it can 

generate in a given time frame. 

Figure 1 Python Tool Manual 

 

Figure 2 displays the complete guide for the Python command-line utility. This manual offers 

comprehensive information regarding the functionalities of each flag, provides a complete list 

of supported hashing algorithms, and outlines the methods for performing commands to 

compare hashes simultaneously. Moreover, it offers instructions on selecting the particular 

hashes for testing. 

 

 

 

 

 

 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

100 

 

Table 2 CPU Information 

 

Product Collection  8th Generation Intel® Core™ i7 Processors  

Total Cores 4 

Total Threads 8 

Max Turbo Frequency 4.20 GHz 

Intel® Turbo Boost Technology 2.0 Frequency‡
 4.20 GHz 

Processor Base Frequency 1.90 GHz 

Cache 8MB 

Bus Speed 4 GT/s 

TDP 15 W 

Configurable TDP-up Base Frequency 2.10 GHz 

Configurable TDP-up 25 W 

Configurable TDP-down Base Frequency 800 MHz 

Configurable TDP-down 10 W 

Max Memory Size 32 GB 

GPU Name Intel® UHD Graphics 620 

 

Regardless of the software component, the hardware parameters utilized for testing these hash 

algorithms will encompass crucial performance aspects. This includes the time required to generate 

the hash for different inputs. Table 2 contains detailed information about the CPU used to perform 

this study. 

4.1. Study workflow 
The purpose of this research is to offer a full analysis of the performance of these algorithms in real-world 

circumstances. Figure 1 illustrates the use of a Python tool to test these algorithms on generated ordered 

integers, random alphanumeric strings of varying lengths, and various wordlists. It's important to note that 

these three algorithms will run simultaneously, using the same hardware resource and under the same 

conditions. 

Figure 2 Study Workflow 

 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

101 

 

 

In the initial step, each hashing algorithm chooses an input model. The input model can consist of 

a sequential number represented as a string, a collection of randomly generated strings with 

different lengths, or wordlists obtained from the internet. 

In the second stage, we select one of the following hashing algorithms: MD5, SHA-256, or SHA-

512. Each of these algorithms will encrypt the input obtained from the first stage, either 

concurrently or independently. 

Execution commences in the third phase. After finishing, performance reports are created. The 

reports encompass the overall duration of task completion, the frequency of iterations per second, 

and the count of false detections. 

We study these reports to draw conclusions. The analysis aims to address multiple investigative 

questions: Is there a constant correlation between the hash method's bit length and its performance 

speed? What is the relationship between the complexity of an algorithm and its performance? Do 

the performances of the SHA algorithms significantly differ between variations within the same 

family? This research delves into these and other questions. 

5. Results and discussion 

In this section of work, we will test three different hash algorithms at different times. Testing 

hashes at different times, even with the same software and hardware, may yield different results 

due to the influence of software parameters at specific moments. For research purposes, we will 

conduct tests simultaneously and individually to make more comprehensive comparisons.  

The hash algorithms we have chosen to analyze are MD5, SHA256, and SHA512. The following 

table shows the speed rate after testing algorithms in different conditions and at different times. 

5.1. Comparison of hashes at different times 
 

The following commands have provided the necessary data to populate the following table. 

python hash.py -t [hash type here] -f [wordlist directory here] -s 

python hash.py -t [hash type here] -n [length of generated numbers] -s 

python hash.py -t md5 -r [minimum length,maximum length] -l [number of generated strings] -s 

The developed Python tool operates as a command-line application. It performs different tasks and 

generates different results based on the arguments provided through different flags. Figure 2 

provides a comprehensive overview for a better comprehension of the preceding terminal 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

102 

 

commands.  

In summary: 1. The -t flag specifies the specific hashing algorithm for evaluation.  

The -f parameter designates the text file for processing.  

The "-s" flag presents performance metrics on the terminal.  

The -n flag generates consecutive numbers with a specified length.  

The -r flag produces random alphanumeric sequences.  

The -l parameter indicates the exact count of created strings. 

The -c parameter indicates the hashing algorithms to compare simultaneously. 

 

Table 3 Separately comparison between hashes 
 

 

Table 3 demonstrates that the MD5 algorithm outperforms both SHA algorithms in every 

situation. However, MD5 is vulnerable to hash collisions because of its widely recognized 

limitations, including its relatively short hash length of 128 bits. On the other hand, even though 

SHA-512 has a bigger hash length of 512 bits and a more sophisticated hashing algorithm 

compared to SHA-256, there is no apparent difference in speed between the two. 

The analysis of 10,000 different generated strings ranging in length from 7 to 10 characters led to 

an unexpected discovery. Even though SHA-512 has a more complicated algorithm, it 

demonstrated superior performance compared to SHA-256. However, the superior performance 

 MD5(it/s) Time(s) SHA256(it/s) Time(s) SHA512 (it/s) Time(s) 

Small Wordlist  

(8,930 combinations) 

653,667.27 0.01 572,726.00 0.02 537,769.88 0.02 

Big Wordlist  

(2,303,940 combinations) 

962,015.04 2.40 806,490.70 2.86 814,010.57 2.83 

Number s of 6 digits 

(1,000,000 combinations) 

900,517.81 1.11 751,772.87 1.33 648,298.21 1.54 

Number s of 7 digits 

(10,000,000 combinations) 

861,612.84 11.61 710,443.59 14.08 654,284.19 15.28 

Number s of 8 digits 

(100,000,000 combinations) 

759,855.76 131.60 673,556.59 148.47 583,274.13 171.45 

7-10 characters strings 

(10,000 combinations) 

12,947.11 0.77 10,041.73 1.00 12,552.01 0.8 

10-20 characters strings 

(10,000 combinations) 

4,661.08 0.68 13,904.50 0.72 10,759.68 0.93 

7-10 characters strings 

(100,000 combinations) 

1,255.38 79.66 1,248.67 80.09 1,153.25 86.71 

10-20 characters strings 

(100,000 combinations) 

1,522.30 65.69 1,447.02 69.11 1,427.68 70.04 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

103 

 

was not evident when dealing with strings consisting of 10–20 characters with the same number 

of combinations. Therefore, we assume that SHA-512 performs better than SHA-256 at a specific 

character length threshold. 

Executing processes at different times can lead to different hardware resource availability because 

other programs may use these resources completely or leave them entirely free. It can lead to 

inaccurate results. We must execute the algorithm under simultaneous processes to test different 

hashing algorithms under identical conditions, ensuring they have access to the same hardware 

resources. 

5.2. Simultaneously comparison of hashes 
The results of the aforementioned tests showed differences when testing three hashes at different 

time points, resulting in varying outcomes due to software parameters. In this section, we will 

explore how these three hashes will react when executed simultaneously, meaning concurrently at 

the same time and using the same software. 

python hash.py -c md5 sha256 sha512 -f [ wordlist directory] -p 

python hash.py -c md5 sha256 sha512 -n [ length] -p 

python hash.py -c md5 sha256 sha512 -r 7,10 -l 100000 -p 

 

5.2.1. MD5, SHA256 and SHA512 tested under text-based file (wordlist) 

The following table provides a concise overview of the hash rate and the time taken to test the 

algorithms on a substantial text-based file containing 2,303,940 lines. Since we are not utilizing 

the hardware resources to create new strings or integers, we expect a greater number of iterations 

per second in this situation. 

Figure 3 Simultaneously wordlist 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

104 

 

 

Figure 3 demonstrates that MD5 has the best pest performance compared to SHA-256 and SHA-

512, mainly because of its shorter bit length and lesser complexity. It was able to successfully 

encrypt all of the wordlist lines in a time span of 3.91 seconds. 

In contrast, SHA-256 demonstrated somewhat superior efficiency compared to SHA-512, 

encrypting all lines in 4.36 seconds, whereas SHA-512 completed the encryption in 4.67 seconds. 

It is worth mentioning that, although SHA-512 has a longer bit length and is more sophisticated, 

the difference in performance compared to SHA-256 is insignificant. 

 
 

5.2.2. MD5, SHA256 and SHA512 tested under sequential number 

The tables below provide a concise summary of the hash rate and elapsed time obtained from 

testing the algorithms using numbers created by the software. The numbers generated range from 

00000000 to 99999999, resulting in a total of 100 million combinations. In this situation, we 

expect a lower number of iterations per second because the CPU is responsible for both producing 

and encrypting the inputs. 

 

 

 

 

 

 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

105 

 

Figure 4 Simultaneously number test 

 
In Figure 4, MD5 exhibits the highest level of performance, completing the encryption of all 

possible number combinations in 187.64 seconds, which is consistent with the prior example. The 

disparity in performance between the hashing algorithms is especially noticeable in this particular 

situation because of the larger number of inputs. The SHA-256 algorithm successfully encrypted 

all possible combinations in 215.47 seconds, whereas the SHA-512 algorithm required 231.36 

seconds to complete the same task. 

These results align with the initial expectations. We still need to determine whether SHA-512 will 

perform faster than SHA-256 when processing randomly generated strings, similar to the scenario 

where we compared the algorithms with different input quantities. 

 
 

5.2.3. MD5, SHA256 and SHA512 tested under random strings 

We conducted tests on the hashing algorithms using randomly generated strings that fell within a 

specific length range of 7 to 10 characters per key. In total, we evaluated 100,000 keys. Because 

we use the CPU for both key generation and encryption, we expect a reduced number of iterations 

per second compared to when working with wordlists, similar to the previous situation. 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

106 

 

During the previous experiment, SHA-512 demonstrated the capability to surpass SHA-256 in 

terms of performance over various time intervals. It is still unclear whether SHA-512 will 

demonstrate the same exceptional performance in this scenario. 

 

Figure 5 Simultaneously random strings first case 

 

In Figure 5, it’s showed that SHA-256 method encrypts all randomly generated strings in 130.61 

seconds, significantly faster than the SHA-512 method, which takes 131.45 seconds. On the other 

hand, MD5 outperformed both SHA algorithms, encrypting the same inputs in 130.2 seconds. 

Running these algorithms simultaneously yielded more consistent results than running them 

consecutively. It is important to note, however, that the performance of SHA-512 greatly improved 

while processing strings of unexpected lengths, whereas the performance of MD5 and SHA-256 

was significantly worse when compared to other circumstances. 

In the upcoming scenario, we will simultaneously test the three algorithms using the same amount 

of input but with longer string lengths. We will prepare for the upcoming scenario. 

The hashing algorithm are tested with a random-length string within a specified boundary (10-20 characters 

each key, 100,000 total keys). Results are as it is shown below 

Figure 6  Simultaneously random strings second case 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

107 

 

 

Figure 6 demonstrates that, in a manner that is analogous to the example presented earlier, SHA-

512 demonstrates superior performance when dealing with inputs of varied lengths, despite the 

fact that it does not far beat the other algorithms. On the other hand, MD5 and SHA-256 both 

exhibit slower transmission times when given the same data. For the purpose of processing strings 

of varying lengths, the three hashing algorithms work with almost similar efficiency for processing 

strings of varying lengths, despite the fact that their bit lengths and algorithmic complexity are 

distinctively different from one another. 

The table that follows summarizes the performance of each individual instance of simultaneous 

algorithm testing. This table displays the number of iterations per second as well as the amount of 

time that each algorithm requires to complete under a variety of different input conditions. 

Table 4 Simultaneously Performance Report 
 

 MD5(it/s) Time(s) SHA256(it/s) Time(s) SHA512(it/s) Time(s) 

       

Text Based 

(2,303,940Combination) 
589,153.82 3.91 528,509.53 4.36 493,736.66 4.67 

Numbers 

(100,000,000 Combinations) 
532,941.95 187.64 464,108.79 215.47 432,604.57 231.16 

7-10 Characters Strings 

(100,000 Combinations) 
790.10 130.02 765.61 130.61 760.76 131.45 

10-20 Characters Strings 

(100,000 Combinations) 
950.91 105.16 922.13 108.45 919.68 108.73 

 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

108 

 

 

Table 4 summarizes the performance of each individual instance of simultaneous algorithm 

testing. This table displays the number of iterations per second as well as the amount of time that 

each algorithm requires to complete under a variety of different input conditions. There is ample 

evidence to support the fact that SHA-256 typically exhibits greater speed than SHA-512 [18]. 

Occasionally, SHA-512 can demonstrate performance that is equivalent to or even surpasses that 

of SHA-256; however, this is uncommon. As indicated in Table 4, these instances commonly arise 

when the hashing algorithms handle randomly produced strings of different lengths. Situations 

where the algorithms encrypt predictable inputs, like sequential number inputs of specific lengths, 

do not exhibit this performance anomaly. 

 

5.2.4. recommendations for future works 

This study showcases the versatility of the Python testing tool since it is capable of supporting a 

wide range of algorithms, including but not limited to MD5, SHA-256, and SHA-512. This 

program has the capability to test more hashing algorithms, such as BLAKE2b, SHA-3-224, 

RIPEMD-160, and SHAKE-128, among others. In the future, researchers may use this capability 

to conduct comparable experiments on the different algorithms supported by the tool.  

This study has revealed a vital discovery: the length of the input has a significant impact on the 

speed of encryption. Empirical evidence demonstrates that SHA-512 can surpass SHA-256 in 

terms of performance when applied to inputs of different lengths. Another option is a study to 

identify the exact length where SHA-512 performs faster than SHA-256.  

Furthermore, a prospective field of research is utilizing the "crunch" software to produce varied 

wordlists from the inputs employed in this work, adhering to specified patterns. Pipelining in Linux 

can subsequently provide these wordlists to the testing algorithms. This approach would enable a 

more extensive evaluation of the algorithms' performance across a broader spectrum of input 

scenarios.



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

109 

 

 

9. Conclusion 

After conducting a thorough performance analysis, we have come to numerous important 

conclusions regarding the efficiency of the MD5, SHA-256, and SHA-512 hashing algorithms. 

MD5 regularly outperforms both SHA-256 and SHA-512 in a range of testing circumstances. The 

main reason why MD5 can handle data more quickly is because of its shorter bit length and lesser 

algorithmic complexity. 

On the other hand, SHA-256 generally demonstrates somewhat superior efficiency compared to 

SHA-512. While SHA-256 may have a slight speed advantage, the difference in performance 

between these two algorithms is not significant. This implies that although SHA-256 may exhibit 

slightly better efficiency in certain situations, the higher bit length and intricacy of SHA-512 do 

not lead to a substantial improvement in performance compared to SHA-256. 

Moreover, when handling inputs of different lengths, SHA-512 demonstrates better efficiency in 

comparison to SHA-256, although it still falls below MD5. In general, although MD5 offers the 

highest encryption speed, its lower bit length presents significant security vulnerabilities. 

SHA-512 offers superior security compared to SHA-256 and MD5 because of its longer bit length 

and more sophisticated algorithm. However, its speed is only slightly slower than the other two 

algorithms. SHA-512 can outperform SHA-256 in some situations. Because of its strong security 

features, SHA-512 is well-suited for use in different applications or platforms, including 

cryptographic systems that require strong data integrity and secure communication protocols, or 

password storage systems. Thus, although SHA-512 may have slightly slower performance, its 

higher security properties make it an excellent option for applications that require high levels of 

security. 

SHA-512 offers superior security compared to SHA-256 and MD5 because of its longer bit length 

and more sophisticated algorithm. However, its speed is only slightly slower than the other two 

algorithms. SHA-512 can outperform SHA-256 in some situations. Because of its strong security 

features, SHA-512 is well-suited for use in different applications or platforms, including 

cryptographic systems that require strong data integrity, secure communication protocols, and 

password storage systems. Thus, although SHA-512 may have slightly slower performance, its 

higher security properties make it an excellent option for applications that require high levels of 

security. 

 



B.J.H     ISSN: 2306-6083 ISSN Online: 2707-3041   ISSUE:20      SPRING 2024  

Beder Journal of Humanities 
 

110 

 

 
REFERENCES 

[1] R. Roshdy, M. Fouad, M. Aboul-Dahab, (2013). Design and implementation a new security 

hash algorithm based on MD5 and SHA-256, International Journal of Engineering Sciences & 

Emerging Technologies, ISSN: 2231 – 6604 

[2] Prashant P. Pittalia, (2019). A Comparative Study of Hash Algorithms in Cryptography, 

International Journal of Computer Science and Mobile Computing, ISSN 2320–088X 

[3] Rafaele Martino, Alessandro Cilardo, (2019). A Flexible Framework for Exploring, 

Evaluating, and Comparing SHA-2 Designs. 

[4] Surbhi Aggarwal, Neha Goyal, Kirti Aggarwa, (2014). A review of Comparative Study of MD5 

and SHA Security Algorithm, International Journal of Computer Applications (0975 – 8887) 

[5] Meiliana Sumagita, Imam Riad, (2018). Analysis of Secure Hash Algorithm (SHA) 512 for 

Encryption Process on Web Based Application, International Journal of Cyber-Security and 

Digital Forensics (IJCSDF) 7(4): 373-381 

[6] Balkesen, C., Teubner, J., Alonso, G., & Özsu, M. T. (2013, April). Main-memory hash joins 

on multi-core CPUs: Tuning to the underlying hardware. In 2013 IEEE 29th International 

Conference on Data Engineering (ICDE) (pp. 362-373). IEEE. 

[7] Aziz, Z. A., Abdulqader, D. N., Sallow, A. B., & Omer, H. K. (2021). Python parallel 

processing and multiprocessing: A rivew. Academic Journal of Nawroz University, 10(3), 345-

354. 

[8] Zheng, Y., Pieprzyk, J., & Seberry, J. (1993). HAVAL—a one-way hashing algorithm with 

variable length of output. In Advances in Cryptology—AUSCRYPT'92: Workshop on the Theory 

and Application of Cryptographic Techniques Gold Coast, Queensland, Australia, December 13–

16, 1992 Proceedings 3 (pp. 81-104). Springer Berlin Heidelberg. 

[9] Chi, L., & Zhu, X. (2017). Hashing techniques: A survey and taxonomy. ACM Computing 

Surveys (Csur), 50(1), 1-36. 

[10] Senthilselvi, A., Surya, H., & Raja, K. (2024, April). HaShuffle-Crafting Secure Passwords 

with a Splash of Shuffle Magic. In 2024 2nd International Conference on Networking and 

Communications (ICNWC) (pp. 1-7). IEEE. 

[11] Van Rossum, G. (2003). An introduction to Python (p. 115). F. L. Drake (Ed.). Bristol: 

Network Theory Ltd. 

[12] Hellmann, D. (2011). The Python standard library by example. Addison-Wesley Professional. 

[13] da Costa-Luis, C. O. (2019). tqdm: A fast, extensible progress meter for python and cli. 

Journal of Open Source Software, 4(37), 1277. 

[14] Langtangen, H. P. (2006). Basic Python. Python Scripting for Computational Science, 73-

129. 

[15] Korzeń, M., & Jaroszewicz, S. (2014). PaCAL: A Python package for arithmetic 

computations with random variables. Journal of Statistical Software, 57, 1-34. 

[16] Sial, A. H., Rashdi, S. Y. S., & Khan, A. H. (2021). Comparative analysis of data visualization 

libraries Matplotlib and Seaborn in Python. International Journal, 10(1), 277-281. 

[17] Youens-Clark, K. (2021). Mastering python for bioinformatics. " O'Reilly Media, Inc.". 

[18] Gueron, S., Johnson, S., & Walker, J. (2011, April). SHA-512/256. In 2011 Eighth 

International Conference on Information Technology: New Generations (pp. 354-358). IEEE. 

 


